The novel triterpenoid CDDO induces apoptosis and differentiation of human osteosarcoma cells by a caspase-8 dependent mechanism.
نویسندگان
چکیده
The oleanane triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) is a multifunctional molecule that induces monocytic differentiation of human myeloid leukemia cells and inhibits proliferation of diverse human tumor cell lines. The present studies on human osteosarcoma cells demonstrate that CDDO induces mitochondrial cytochrome c release, caspase-3 activation, and internucleosomal DNA fragmentation. Overexpression of the caspase-8 inhibitor CrmA blocked CDDO-induced cytochrome c release and apoptosis. By contrast, overexpression of the antiapoptotic Bcl-x(L) protein blocked CDDO-induced cytochrome c release, but only partly inhibited caspase-3 activation and apoptosis. In concert with these findings, we demonstrate that CDDO: 1) activates caspase-8 and thereby caspase-3 by a cytochrome c-independent mechanism and 2) induces cytochrome c release by caspase-8-dependent cleavage of Bid. The results also demonstrate that treatment of osteosarcoma cells with CDDO induces differentiation, as assessed by alkaline phosphatase activity and osteocalcin production, and that this response is abrogated in cells that overexpress CrmA. These findings demonstrate that CDDO induces both osteoblastic differentiation and apoptosis by caspase-8-dependent mechanisms.
منابع مشابه
The novel triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid induces apoptosis of human myeloid leukemia cells by a caspase-8-dependent mechanism.
The oleanane triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) is a multifunctional molecule that induces growth inhibition and differentiation of human myeloid leukemia cells. The present studies demonstrate that CDDO treatment results in apoptosis of U-937 and HL-60 myeloid leukemia cells. Similar to 1-beta-D-arabinofuranosylcytosine (ara-C), another agent that inhibits growth ...
متن کاملMolecular Mechanisms of Luteolin Induced Growth Inhibition and Apoptosis of Human Osteosarcoma Cells
Luteolin is a flavone in medicinal plants as well as some vegetables and spices. It is a natural anti-oxidant with less pro-oxidant potential but apparently with a better safety profile. The purpose of this study was to investigate the molecular mechanism of luteolin-mediated apoptosis of MG-63 human osteosarcoma cells. MTT assay kit was employed to evaluate the effects of luteolin on MG-63 cel...
متن کاملMolecular Mechanisms of Luteolin Induced Growth Inhibition and Apoptosis of Human Osteosarcoma Cells
Luteolin is a flavone in medicinal plants as well as some vegetables and spices. It is a natural anti-oxidant with less pro-oxidant potential but apparently with a better safety profile. The purpose of this study was to investigate the molecular mechanism of luteolin-mediated apoptosis of MG-63 human osteosarcoma cells. MTT assay kit was employed to evaluate the effects of luteolin on MG-63 cel...
متن کاملThe synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces caspase-dependent and -independent apoptosis in acute myelogenous leukemia.
In acute myeloid leukemia (AML), resistance to chemotherapy is associated with defects in both the extrinsic and intrinsic pathways of apoptosis. Novel agents that activate endogenous apoptosis-inducing mechanisms directly may be potentially useful to overcome chemoresistance in AML. We examined the mechanisms of apoptosis induction by the novel synthetic triterpenoid 2-cyano-3,12-dioxooleana-1...
متن کاملApoptotic activity and mechanism of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic-acid and related synthetic triterpenoids in prostate cancer.
Synthetic triterpenoids 2-cyano-3, 12-dioxooleana-1, 9-(11)-dien-28-oic acid (CDDO) and CDDO-Me (CDDO-methyl ester) have entered clinical trials for cancer. We determined that CDDO analogues at submicromolar concentrations induce apoptosis of cultured prostate cancer cell lines, LNCaP, ALVA31, Du145, PC3, and PPC1, with lethal dose 50% approximately 1 micromol/L for CDDO-Me and an imidazole ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 59 5 شماره
صفحات -
تاریخ انتشار 2001